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Abstract Climate change impacts population distributions, forcing some species to
migrate poleward if they are to survive and keep up with the suitable habitat that is
shifting with the temperature isoclines. Previous studies have analysed whether pop-
ulations have the capacity to keep up with shifting temperature isoclines, and have
mathematically determined the combination of growth and dispersal that is needed to
achieve this. However, the rate of isocline movement can be highly variable, with much
uncertainty associated with yearly shifts. The same is true for population growth rates.
Growth rates can be variable and uncertain, even within suitable habitats for growth.
In this paper, we reanalyse the question of population persistence in the context of
the uncertainty and variability in isocline shifts and rates of growth. Specifically, we
employ a stochastic integrodifference equation model on a patch of suitable habitat
that shifts poleward at a random rate. We derive a metric describing the asymptotic
growth rate of the linearised operator of the stochastic model. This metric yields a
threshold criterion for population persistence. We demonstrate that the variability in
the yearly shift and in the growth rate has a significant negative effect on the persis-
tence in the sense that it decreases the threshold criterion for population persistence.
Mathematically, we show how the persistence metric can be connected to the principal
eigenvalue problem for a related integral operator, at least for the case where isocline
shifting speed is deterministic. Analysis of dynamics for the case where the dispersal
kernel is Gaussian leads to the existence of a critical shifting speed, above which the
population will go extinct, and below which the population will persist. This leads to
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clear bounds on rate of environmental change if the population is to persist. Finally,
we illustrate our different results for butterfly population using numerical simulations
and demonstrate how increased variances in isocline shifts and growth rates translate
into decreased likelihoods of persistence.
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1 Introduction

The consequences of climate change on population abundance and distribution have
been widely investigated for the last two decades. One of these consequences is a
modification of range distributions. Indeed, we know that, for a large variety of ver-
tebrate and invertebrate species, climate change induces range shift towards the poles
or higher altitudes, contraction or expansion of the habitat and habitat loss (Parmesan
and Yohe 2003; Hickling et al. 2006; Menendez et al. 2014; Parmesan 2006; Lenoir
et al. 2008, amongst other). Mathematical models and simulations that include climate
change have predicted an effect of climate change on range distribution through habi-
tat migration, habitat reduction and expansion and habitat loss (Parmesan and Yohe
2003; Ni2000; Hu et al. 2015; Malcolm and Markham 2000; Polovina et al. 2011; Parr
et al. 2012; Hazen et al. 2013). In this paper, we are interested in understanding, with
the aid of a mechanistic model, the effect of shifting range on population persistence
when the yearly range shifts and the population growth rates are stochastic.
Mechanistic models have been used to study the effect of shifting boundaries on
population persistence, by considering a suitable habitat, which is a bounded domain
where the population can grow, that is shifted towards the pole at a forced speed ¢ > 0.
Potapov and Lewis (2004) used a reaction—diffusion system with a moving suitable
habitat to investigate the effect of climate change and shifting boundaries on population
persistence when two populations compete with one another. Berestycki et al. (2009)
used a similar equation, in a scalar framework, to study the persistence property of
one population facing shifting range, and characterised persistence as it depends on
the shifting speed. More recent papers also investigate the effect of shifting range on
population persistence of single populations (Richter et al. 2012; Leroux et al. 2013; Li
et al. 2014). In all these, reaction—diffusion equations are used to model the temporal
evolution of the density u of a population in space and time. That is, individuals are
assumed to disperse and grow simultaneously. In these models, dispersal is local in the
sense that the population disperses to its closest neighbourhood, in a diffusive manner.
Another approach to modelling the temporal evolution of the density of a population
is to consider populations that disperse and reproduce successively and to allow for
nonlocal dispersal. In this case, integrodifference equations are the appropriate model
for the dynamics of the density u. Integrodifference equations, introduced by Kot and
Schaffer (1986) to model discrete-time growth-dispersal, assume time (t = 0, 1...)
to be discrete and space £ € £2 to be continuous. From one generation to the next, the
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population grows, according to a nonlinear growth function f(u) and then disperses
according to a dispersal kernel K, so

U (€) = /Q K ) fuGydy, 1 eN. (1)

Strictly, the dispersal kernel K (§, n) is a probability density function describing the
chance of dispersal from 7 to &.

We consider a self-regulating population, with negative density dependence so the
slope of the growth is assumed to be monotonically decreasing with f (1) > u for 0 <
u < Cand f(u) < uforu > C,where C > 0is the carrying capacity. As we consider
apopulation thatis not subject to an Allee effect, the standard assumption on the growth
function is that the geometric growth rate is the largest at lowest density, that is, f (u)/u
achieves its supremum as u approaches 0. We denote r = lim,_,o+ f (u)/u = f'(0).
When we wish to explicitly distinguish between populations with different geometric
growth rates, we modify our notation, replacing f (u) by f;(«). Within this framework,
we consider two types of growth dynamics: compensatory and overcompensatory. The
compensatory growth dynamics are monotonic with respect to density u, whereas the
overcompensatory growth dynamics have a characteristic “hump” shape (Fig. 1).

The eigenvalue problem associated with the linearisation of (1) about u = 0 is

rp(§) = V/Q K (&, me¢@mdn 2

and persistence of the population u,(¢) depends upon whether A falls above or below
one (Kot and Schaffer 1986; VanKirk and Lewis 1997; Lutscher and Lewis 2004).
An approximate method for calculating A employs the so-called dispersal success
approximation (VanKirk and Lewis 1997). Without loss of generality, one can assume
that |, o ®(1)dn = 1 and integrating the previous equation on §2 we get

A=r / / K& mé(ndn = r / s(mé(n)dn 3)
2 JR 2

where s(n) = f_Q K (&, n)d& is the dispersal success. This function represents the
probability for an individual located at 1 to disperse to a point within the domain. The
so-called dispersal success approximation ¢ (1) =~ ‘% therefore allows the principal
eigenvalue A to be estimated by (VanKirk and Lewis 1997).

— r
A= — d 4
|9|/9S('7)" 4

This approximation gives A as the growth rated times the estimated proportion of indi-
viduals that stay within the suitable habitat from one generation to the next. A modified
dispersal success approximation recently introduced by Reimer et al. (2016) improves
upon the dispersal success approximation assumption that the population is uniformly
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distributed within the favourable environment. Reimer et al. (2016) introduced a mod-
ified approximation that weights the dispersal success values by the proportion of the
population at each point. They defined the modified dispersal success approximation

by
~_ T s(n)
r= |9|/g( > )s(")d" ©

and showed that this gave a better approximation to the eigenvalue. We will employ
both versions of the dispersal success approximation (4) and the modified dispersal
success approximation (5) in our calculations later in this paper.

So far we have considered only the dependence of the growth on the density u.
In the framework for climate change, the population can grow differently depending
on where it is located with respect to space and time. To take this into account, we
introduce a suitability function, g;(n) (0 < g; < 1), which depends on space and
time and multiplies the growth map f. As we consider populations whose suitable
habitat shifts towards the pole, we choose a particular form for suitability function,
g:+(n) = go(n—s;), where g is the initial suitability function in the absence of climate
change and s, is a parameter standing for the centre of the suitable habitat. The simple
case where the habitat shifts at a constant speed c is given by s, = ct. However, as we
describe below, it is also possible to allow s; to vary randomly about c?.

Following the growth stage, the population disperses in space according to the
dispersal kernel K. The kernel K is assumed to be positive everywhere, that is, the
probability of dispersing to any point in space is always positive. Dispersal kernels are
typically assumed to depend only on the signed distance between two points in space,
i.e., only on the dispersal location relative to the source location. If the population has
no preferred direction of dispersal, the kernel is symmetric, depending only upon the
distance between source and dispersal locations. This is not the case, however, in rivers
where the population is subjected to a stream flow, for example, or in environments
with a prevailing wind direction that affects dispersal. In this paper, we consider the
Gaussian and the Laplace kernel as examples of typical symmetric dispersal kernels
(Fig. 2).

In this framework of discrete-time growth-dispersal models, Zhou and Kot (2011)
investigated the effect of climate change and shifting range on the persistence of
the population and highlighted the possible existence of a critical shifting speed for
persistence. More recently, several works investigated the effect of shifting range in
more general discrete-time growth-dispersal models (Zhou and Kot 2013; Harsch et al.
2014; Phillips and Kot 2015).

Recent research reports an increase in the environmental stochasticity in population
dynamics, partly due to climate change and its effect on the frequency and the intensity
of extreme climatic events covering large areas of the globe (Saltz et al. 2006; IPCC
2007; Kreyling et al. 2011). It is also known that the projected consequences for
population ranges vary, depending on the different scenarios related to climate change
(see, for example, [IPCC (2014)).

In this paper, we focus on the effect of environmental stochasticity on population
persistence in the presence of a shifting range, using a stochastic population model.
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Fig. 2 Laplace and Gaussian dispersion kernel x +— K (x) centred at 0

The development of stochastic population models in population ecology was initially
motivated by the study of the effect of environmental stochasticity on population
dynamics and on the large time behaviour of the population (May 1973; Turelli 1977).
We incorporate stochasticity into our modelling framework in two ways: first with
respect to the shifting speed for suitable habitat and second with respect to the growth
rate within the suitable habitat. The model for the shifting speed gives the centre of
the suitable habitat as s, = ct + o, where o; is a random variable. Here we assume
that ¢ is unknown but fixed, depending on the scenario considered for the severity
of global warming (¢ € {cy, ..., ¢y}) (Fig. 3). Variability of the growth dynamics at
each generation, for example, due to weather conditions or extreme climate events,
is included through stochasticity in the growth function f(u). Our approach is to
incorporate the randomness into the geometric growth rate r; € {ry, ..., r,} (Fig. 4)
and so in any given year the growth function is given by f,, (u) where r; = ,/t 0).
Our goal is to mathematically analyse the effect of climate change and shifting
range on population dynamics for a species that grows and then disperses at each
generation, taking into account stochasticity induced by environmental variability and
climate change. In Sect. 2, we derive the model and state model assumptions. In Sect. 3,
we first define a persistence condition, derived from the papers of Hardin et al. (1988)
and Jacobsen et al. (2015). We then detail computation of the persistence criterion
and highlight the link between persistence of the population and principal eigenvalue
of the operator linearised about O for the case where the shifting speed is not random
(0; = 0). We also prove that when the dispersal kernel is Gaussian and the speed
is not random, there exists a critical shifting speed characterising persistence of the
population. Speeds above this critical value will drive the population to extinction,
while speeds below will allow the population to persist. In sect. 4, we apply the theory
to an example in butterfly population subject to changing temperatures in Canada
(Leroux et al. 2013) and use numerical simulations to investigate the dependence
of the critical shifting speed on the variance of the dispersal Gaussian kernel. We
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Fig. 3 Position of the centre of the suitable habitat depending of the generation 7, the chosen shifting
speed ¢; € {cq, ..., cy} and the random process o;. In this figure, there are three possible ¢ and for each
¢j € {c1, ¢, c3}, the centre of the suitable habitat at generation ¢ is located at ¢; + o7, (07 ); independently
identically distributed

also compute the persistence criterion as a function of the variance of the dispersal
kernel for Gaussian and Laplace kernel. Lastly we numerically investigate the effect
of the variability in the yearly shift and in the growth rate on the persistence of the
population. In Appendix, we draw on classical theory of invasion speeds for stochastic
integrodifference equations to aid development of a heuristic link between the speed
of the stochastic wave in the homogeneous framework and the critical domain size
and persistence condition.

2 The Model

In this section, we derive the mechanistic model used to study population persistence
facing global warming and habitat shifts. We explain the different assumptions made
for each component throughout the derivation of the model and conclude by explaining
how it results in the problem in a moving environment.

As already stated in the introduction, we use the theory of integrodifference equa-
tions to model the temporal dynamics of the density of the population «, as introduced
by Kot and Schaffer (1986). In the classical homogeneous case, the model is as given
in Eq. (1) with £2 given by R and with u( given, nonnegative, compactly supported
and bounded.

We make the following assumptions regarding the dispersal kernel K

Hypothesis 1 (i) Forallé e R, n e R, K(&,n) = K& —n).
(ii) K (x) is well defined, continuous, uniformly bounded and positive in R.
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The first hypothesis means that K takes the form of a difference kernel and depends
only on the signed distance between & and 5. The second holds for typical kernel, such
as the Laplace and Gaussian (Fig. 2).

To include the effect of climate change on range distribution in this model, we
assume that the suitability of the environment is heterogeneous in the sense that

U1 (€) = /]R K — me () f (s Gn)dy. ©)

where the function (¢, n) +— g;(n) stands for the suitability of the environment at
generation ¢ and location 7.
We make the following assumptions for the suitability function g;:

Hypothesis 2 (i) Denoting s; as the reference point on a suitable habitat, we assume

that g:(n) = go(n — st),
(ii) go(x) is compactly supported, nonnegative, bounded by I and is nontrivial in R.

Biologically these assumptions mean that the suitable environment has a constant
profile go that is shifted by s, at generation .
The model then becomes

ur1(§) = /R K (& —mgo(n — so) f (us (1))dn. (N

We denote §2¢ as the support of go, i.e., 209 := {x € R, go(x) > 0}. Notice that only
the population located in §29 +s; := {x € R|x = x"+s5;, x’ € 20} contributes to the
growth from generation ¢ to generation # + 1. To introduce environmental stochasticity
in our model, we assume that (s;);en is a random process and f(u) = f, (1), with
(fr)teN a sequence of random functions. We interpret r; as the geometric growth
rate of the population at low density. These two forms of environmental stochasticity
emphasise the dependence of the range shift and the growth rate on the strength of the
climate change. Moreover, we can be more precise about the form of the shift variable
sy. Indeed, we assume that for all t € N, s; = ¢t + o;, where ¢ > 0 is a constant
representing the asymptotic shifting speed and o; is arandom variable representing the
environmental stochasticity in the shift from one year to the next. In the introduction,
we stated that the asymptotic shifting speed itself may be uncertain. However, from
now on, we consider it to be a fixed constant ¢ and study the problem of persistence
of the population for different possible values of the asymptotic shifting speed c.

Denoting by («;); = (o7, ;) and S the set of possible outcomes for « at each
generation, we assume that the elements (¢;); are independent, identically distributed
and bounded by appropriate values, namely:

Hypothesis 3 (i) («;); = (o7, 1) is a sequence of independent, identically distrib-
uted random variables, with distribution P,
(ii) There exist 0 < 0 < o such that forallt € N, o < o; < & with probability 1
(iii) There exist¥ > r > O such that for allt € N, r < r, <7 with probability 1

We consider a self-regulating population, with negative density dependence and make
the following assumptions on the growth function f:

@ Springer



Climate Change and Integrodifference Equations 1875

Hypothesis 4 For any r such that o € S

(i) fr:R — [0, 400) is continuous, with f.(u) =0 forallu <0,
(ii) There exists a constant m > 0 such that, for all r,
a. u € R+ f.(u) is nondecreasing,
b. 0 < f(u) < m for all positive continuous function u,
c. If u, v are constants such that 0 < v < u then f.(u)v < f,(v)u,
d. u € R f.(u) is right differentiable at 0, uniformly with respect to « € S.
(iii) We denote r = f/(0) as the right derivative of f, at 0 and assume for now that
a. r < fl(0) <7, from Hypothesis 3(iii)
b. inf{f,(b), @ € S} > 0, with b := msup, g K (x) f-Q() go(y)dy.

Hypothesis 4(i) means that the population does not grow when no individuals
are present in the environment. We also assume that the growth of the population
is bounded (Hypothesis 4(ii)b) and consider a population not subject to an Allee
effect, that is, the geometric growth rate is decreasing with the density of the pop-
ulation (Hypothesis 4(ii)c). Hypothesis 4(ii)d holds for typical growth functions as
the ones illustrated by Fig. 1. Notice that because of Hypothesis 4(ii)a, we do not yet
consider models with overcompensatory competition here. Indeed we will need this
monotonicity assumption to prove large time convergence of the solution of our prob-
lem. Nevertheless, we can extend our result to the case with overcompensation where
f is not assumed to be nondecreasing and so Hypothesis 4(ii)a no longer holds. More
details are given in Corollary 1, stated in the next section. Hypothesis 4(iii)a assumes
that the geometric growth rate at zero density is bounded from above and below by
some positive constants, while Hypothesis 4(iii)b implies that the growth term at the
maximal density is positive, for all the possible environments.

Finally, denoting by Fy, (1) := f_Q Kx—y+ogo(y — o) fr,(u(y))dy, we make
a last assumption:

Hypothesis 5 There exists o™ € S such that
Fo(u) = Fox(u) (®)

forall @ € S, u nonnegative continuous function.

This assumption means that there exists an environment o™ that has the better outcome
than all other environments in terms of population growth.
The general problem becomes

U1 (€) = /R K — mgon — so) fr, (s ()dn. ©

We are interested in the large time behaviour of the density u. Using a similar
approach to the one of Zhou and Kot (2011), we would like to study the problem in the
shifted environment, so as to track the population. Considering the moving variables
&v1 = & — si41, nr := 1 — sy and letting u;(n;) = u;(n + s;) be the associated
density in the moving frame (where the reference point is the centre of the suitable
environment that is shifted by s, at time ), we obtain a problem where the space
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1876 J. Bouhours, M. A. Lewis

variables &1 and 7, are also random variables. To simplify the analysis, we consider
the problem in the “asymptotic”” moving frame. That is we consider x = & —c(t 4+ 1)
and y = n — ct and using Hypothesis 1(i), Eq. (9) can be written as

up1(x +c+1) = /R K(x —y+0)go(y —or) fr, (u: (y +ct))dy.  (10)

Letting u;(y) := u;(y + ct) be the associated density in the moving frame, we have

upy1(x) = /R K(x —y+c)go(y — o) fr, (u: (y))dy. (1)

Dropping the bar, we obtain the following problem, in the moving frame,

i1 () = /R K(x =y + 00y — 00) f, (s (5))dy, (12)

where u( is given as a nonnegative, nontrivial and bounded function. Moreover, as
stated in Hypothesis 3(ii), for all t € N, o; € (o, o) and thus defining

2 := (inf 20 + o, sup 20 + 7), (13)

we only have to study Eq. (12) forall x € 2, for all € N. The problem in the moving
frame becomes

Ur1(x) = /Q K(x —y+c)go(y = a1) fr, (us (y))dy, (14)

where u( is given as a nonnegative, nontrivial and bounded function. Notice that this
problem is now defined on a compact set £2 C R.

Many results already exist for the deterministic version of (14). When o; = 0 and
Jf is deterministic, depending only on u, it has been shown that, if go(y) = 1,_ L Ly
the magnitude of the largest eigenvalue of the linearised operator around 0 determines
the stability of the trivial solution and thus the persistence of the population (see
Zhou and Kot (2011, 2013) for the one dimensional problem, Phillips and Kot (2015)
for the two dimensional problem). Harsch et al. (2014) study a similar deterministic
integrodifference equation modified to include age- and stage-structured population
and show that if the magnitude of the principal eigenvalue of the linearised problem
around 0 exceeds one, then 0 becomes stable and the population goes extinct. Zhou
also studied the associated deterministic problem (12), for more general deterministic
functions f and go (Zhou 2013, chapter 4).

In this paper, we are interested in similar questions about persistence of the popula-
tion, but now for a shifting environment that moves at a random speed and a population
that reproduces at a growth rate, chosen randomly at each generation.

Mathematically the assumptions on K, f and F that we make are similar than
those made by Jacobsen et al. (2015) in their study of the question of persistence of a
population in temporally varying river environment. They assumed that the dispersal
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kernel and growth terms are randomly distributed at each time step but also assumed
asymmetric dispersal kernels to take the effects of water flow into account. They used
the theory of Hardin et al. (1988) to develop a persistence criterion for the general
model

ur1(x) = Fo, (s (x)), (15)

where t € N, x € £2 C R”" and («;); are independently identically distributed
random variables and related this persistence criterion to the long-term growth rate.
In what follows, we use similar theory to study our integrodifference Eq. (14) where
o = (01, )i

3 Persistence Condition for Random Environments with Shifted Kernel

In this section, we derive a criterion that separates persistence from extinction for a
population facing random environments and climate change. We highlight the depen-
dence of this criterion on the asymptotic geometric growth rate at low density on the
one hand and on the shifted dispersal success function on the other hand. We then
develop a connection between persistence and the magnitude of the principal eigen-
value of a linearised operator for the case when only the growth rate is stochastic.
This allows us to conclude on the existence of a critical shifting speed for the case of
Gaussian dispersal kernel.

3.1 Conditions for Persistence

We first describe the derivation of the deterministic criterion characterising persistence
from extinction of the population.

Define (u;); to be the solution of problem (14). Then, (u;);, the sequence of pop-
ulation density at each generation ¢ € N, is a random process and for each ¢ positive,
u; takes values in C4(£2), the set of continuous, nonnegative function defined on 2.
Using the same notation as Hardin et al. (1988), we can rewrite Eq. (14) as follows

Ur1(x) = Fo, [ur](x), (16)

forall x € 2.
We have the following theorem about the large time behaviour of the solution

Theorem 1 Assume that K, go, f, and (a;); satisfy all the assumptions stated in
Sect. 2 (Hypotheses 1-5), let (u;); be the solution of problem (14), with a bounded,
nonnegative and nontrivial initial condition uo. Then u; converges in distribution to a
random variable u* as time goes to infinity, independently of the initial condition u,
and u* is a stationary solution of (14), in the sense that

u*(x) = /Q K=y +Og0(y — ™) fre (w*(1)dy, (17)
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with (o*, r*) a random variable taking its values in S with distribution Py (Hypothesis
3i). Denoting by u* the stationary distribution associated with u* and uw*({0}) the
probability that u*™ = 0, we have that u*({0}) = 0 or ©*({0}) =1

The proof of this theorem follows from Hardin et al.(1988, Theorem 4.2) and is detailed
in Appendix 1. One can then be more precise about the distribution pu*. Define

1/t
A[ = (/ ﬁt(x)dx) s (18)
2

where (i1;); is the solution of the linearised problem around 0, i.e., for all x € £2

Upg1(x) = Lo ity (x) 1= /9 K(x —y+0)go(y —onriit(y)dy. (19)

The metric A; can be interpreted as the growth rate of the linearised operator up to
time ¢ and its limit, representing the asymptotic growth rate of the linearised operator.
We have the following theorem

Theorem 2 Let A; be defined as in (18), then

lim A; = A € [0, +00), with probability 1.
t—+o0

And,

— If A < 1, the population will go extinct, in the sense that u*({0}) = 1,
— If A > 1, the population will persist, in the sense that u*({0}) = 0.

The proof of this theorem follows from Hardin et al.(1988, Theorem 5.3) and Jacobsen
et al.(2015, Theorem 2), and it is explained in Appendix 1. From these two theorems,
one can then deduce a corollary, for the case where the growth function f is not
assumed to be monotonic anymore.

Corollary 1 Let K, f, go and (a;), satisfy the assumptions from Sect. 2 except assump-
tion 4(ii)a, that is, f, is not assumed to be nondecreasing. Let (u;); be the solution of
(14), with a bounded initial condition u. Let A; be defined as in (18), then

lim A; = A € [0, +00), with probability 1.

t——+00

Also,

— If A < 1, the population will go extinct, in the sense that lir+n u;(x) = 0 forall
—+00

Xx € §2 with probability 1,

— If A > 1, the population will persist, in the sense that liminf u,(x) > 0 with
I—>+00 ye

probability 1.
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Proof First note that

1 Fo(@)|loo = Ifé?z‘/g K(x—y+ogo(y —o)fr(u(y))dy (20)
<m-sup K(x) - go(y)dy = b, (2D
xeR 20

where m is defined in Hypothesis 4(ii)b. This implies that
ui(x) < b, (22)

for all r € N*, for all x € £2. Then define lower and upper nondecreasing functions
that satisfy Hypothesis 4,

ueCi(R)— f (), u€ CL(R) — f,(u),

so their slopes match that of f, at zero
£10) = £0) = F(0) =1, (23)
and they satisfy the inequalities
0<f )< fru) < frw) <m (24)

for all u € (0, b). For instance, we can choose the nondecreasing function

f,@) = min f.()and f,(u) = max f(v), (25)

One can easily prove, using the definition of f - f, and the properties of f,, that

i , and ?r as defined in (25) satisfy Hypothesis 4(i), (ii) and (iii) and are such that
(23)—(24) are satisfied.
Then denoting (v;);, respectively, (w;);, as the solution of problem (14), with i ,

instead of f;, respectively, ?, instead of f;, such that vg = ug = wop, we have
v (x) < ur(x) < wy(x) (26)
forall € N, for all x € §£2. Applying the previous theorems (Theorems 1 and 2), we

know that

— If A > 1 (where A is defined in Theorem 2), then the population associated with
the process (v;); persists in the sense that u} ({0}) = P(t lirll v; = 0) = 0, which
— 400

implies, using (26) that lim inf u,(x) > O with probability 1,
t—>400 xef2

— If A < 1, then the population associated with the process (w;); goes extinct in
the sense that u} ({0}) = P( 1i$1 w; = 0) = 1, which implies, using again (26),
——+00

that . ligl uy(x) =0, for all x € £2, with probability 1.
—1+00
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This completes the proof of Corollary 1. O

This means that the results about persistence and extinction extend to the case of over-
compensatory growth as illustrated in Fig. 1, even though we cannot draw conclusions
about the large time convergence of the solution.

Note that the persistence criterion as given by Theorem 2 or Corollary 1 is difficult
to analyse further. It requires the calculation of the asymptotic growth rate of the lin-
earised operator under random environmental conditions (Eq. (18)). However, we can
proceed heuristically regarding a necessary condition for persistence of the population
by comparing the asymptotic shifting speed ¢ with the asymptotic invasion speed of
the population in a homogeneous environment. Consider the population dynamics in
a homogeneous environment (go = 1). Equation (19) becomes

a0 = [ K=+ anin)dy. o)
If we consider exponentially decaying solution of the form #; o« h;e ™%, s > 0,
substitution into (27) yields
hiy1 = M(s)e *“h;ry (28)
where M is the moment generating function of K
M (s) :/ e** K (z)dz. (29)
R
The pointwise growth rate of the solution is given asymptotically by
1 (h 1<
Jim I (h—;) =In(M(s)) + lim — Z(:)ln(r,») —cs (30)
=
= E[In(roM(s))] — cs 31
and is positive if ¢ < ¢* where
|
¢* = inf —E[In(roM(s))]. (32)
s>0 8

We interpret ¢* as the invasion speed of a population undergoing dispersal and stochas-
tic growth in a spatially homogeneous environment. In the case where g is diminished,
so it is not equal to one at all point in space, ¢ < ¢* may no longer suffice to give
a positive pointwise growth rate. On the other hand, if we consider a bounded, com-
pactly supported initial condition, it¢, and thus for all s > O there exists /¢ such
that i1g(x) < hge™*, then the population u;, solution of (27) starting with the initial
condition g,

i1 (x) < hypre™, (33)
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The pointwise growth rate of the solution u; will thus be smaller that the pointwise
growth rate of the solution i, ™%, and ¢ < ¢* is necessary to give a positive pointwise
growth rate of ;.

3.2 Computation of the Persistence Criterion A

In this section, we detail possible computation of the persistence criterion A and
highlight the link between A and the principal eigenvalue of the linearised operator
around zero.

Using the analysis of the previous section, one can determine whether a population
can track its favourable environment and thus persist (A > 1 in Theorem 2 and
Corollary 1) or cannot keep pace with the shifting environment and goes extinct (A < 1
in Theorem 2 and Corollary 1). It would be interesting to understand the dynamics

of A = lirll A; in terms of the different parameters of the problem. Using the
—>—+00

definition of A; (18), we have
Al = / iy (x)dx (34)
2
= / / K(x —y+c)go(y — oo)roup(y)dydx (35)
eJe

where rg, oy are the realisations for the geometric growth rate and the yearly shift at
generation 0. Continuing,

12
Ay = ( / ﬁz(x)dx) (36)
2

1/2
= (/Q /Q Kx—y +c)go(y1 — Gl)rlﬂl(m)d)’ldx) (37)
= (riro)'/? (/ / / K(x —y1 4+ ¢)goy1 — oK (1 — y2 +¢)
R2J2JR2
g0(y2 — 90)ug(y2)dy2dy;dx)'/? (38)

where r1, o are the realisations for the geometric growth rate and the yearly shift at
generation 1. In a similar manner, one can then derive the more general formula

A =R M (39)
where
t—1
R, = Hr,- e RT, (40)
i=0

the geometric mean of the geometric growth rate at zero and
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Kt=/Q.../QK(x—y1+c)go(y1—o,,l)~--K(y,,1—yt+c)

————
t+1 terms
go(yr — oo)uo(y)dy; ...dyidx 41
Considering =
1
In(R") = - Z(;ln(ri), (42)
1=

and using the strong law of large number we have
In(R") > E[In(ro)] € Ras t — 400
with probability 1 and thus obtain
Rtl/t — EM00] =R € (0, +00)ast — +o0, (43)

with probability 1. Combining Egs. (39) and (43), the persistence criterion A becomes

A = FMOOT i M7 (44)

t—+00

This formula for A highlights the dependence of the persistence criterion on the
different parameters of the problem. Notice that the distribution of the growth rate
at zero affects the first part, whereas the distribution of the yearly shifts affects the
second part of the formula. We further analyse the effect of the variation in » or the
variation in o using numerical simulation in Sect. 4.

Persistence Criterion A for Deterministic Shifting Speed

We turn our attention to further analysis of the persistence criterion A, as given in
(44), when we assume that the shifting speed is not random. That is, we assume that
o = 0 and thus randomness comes only from the growth term. We still consider a
population that sees its favourable environment shifted at a speed c, but this speed is

not assumed to have random variation from one generation to the next. In this case,
2 = £2¢ and

Ar=R" (/ / K(x —y1+0)go(y1) - K(yi—1 =y +¢)
20 20
1/t
go(y)uo(yr)dyy - - - dyldx) : (45)
Define /. the linear operator such that

Kolul(r) = /Q K(x — y + )go(u(y)dy. (46)
0
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As K is positive and £2( is compact, the operator /. is compact (Krasnosel’skii 1964)
and strongly positive, that is, for any function u > 0, there exists t+ € N such that

Kilulx) = K. [ICC[ R 7. O 171 ]:|(x) > 0 for all x € $£2p. Then, applying the

Krein—Rutman theorem, it follows that this operator possesses a principal eigenvalue
Ac > 0 such that |A| < A, for all other eigenvalues A and A, is the only eigenvalue
associated with a positive principal eigenfunction ¢.. That is, A, > 0 and ¢, > 0
satisfy

Ace(x) = /Q K —y+co)go(y)oc(y)dy 47)
0

for all x € £29. One can always normalise ¢, such that f-QO ¢.(y)dy = 1. Now
choosing the initial condition for Eq. (14) so that ug = ¢., we have

Ar=R o (48)
so that
A=R-hi, (49)

with R = e£ln00)] defined in (43).

One has to approximate the principal eigenvalue X, to be able to conclude about the
persistence of the population. One can refer to the paper by Kot and Phillips (2015)
for the description and implementation of different numerical or analytical methods
to compute the principal eigenvalue of a linear operator.

In the specific case of Gaussian kernel with variance (6%)2, that is,

x2

1
K@) = —————¢ 262, (50)

V27 (0 K)2

the principal eigenvalue of the shifted linear operator /C. can be expressed as a decreas-
ing function of c. Indeed, we know that 1. and ¢, satisfy for all x € £2¢

1 oyt
hebe(x) = / LT g(ée(ndy 1)
e 2 /270 K)? ‘
(x—y)2 2 2e(x—y)

e AR TR 2 go¢c(y)dy (52

1
Q0 /21 (0 K)2
The last equality is equivalent to

2 ox t—y)?
(e257 he) - (eFP ¢ (x)) = e 27 go(y)(e w7 bc(y))dy.

Q0 /21 (0 k)2

(53)
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cX (,‘2
Letting ¢ := e ©®? ¢, and Ag := e2¢5? A, Eq. (53) becomes

rogo = Kolgo] (54)

and ¢y is a positive function. Thus, one has that

2
e =€ 2065720, (55)

where A is the principal eigenvalue of the linear operator o (defined by (46) when
¢ =0)and

62 -
A=¢ 2057} R (56)

is decreasing with ¢ > 0. Assuming that the parameters of the problem are chosen so
that when ¢ = 0 the population persists, that is

R-xo > 1, (57

there exists a critical value ¢* > 0 such that for all ¢ < ¢* the population persists and
when ¢ > ¢* the population goes extinct (in the sense of Theorem 2 or Corollary 1).
The critical value ¢* is such that

_? _
e 20523, - R=1 (58)
that is,
¢* =20 K)2 (In(ho) + Eln(ro)]). (59)

We can thus state the following proposition

Proposition 1 Ler K, f and F satisfy the assumption from Sect. 2. Assume also that
o, = 0 and K is a Gaussian kernel with variance (o X )2, that is,

2

1 __xs
K(x) = —————¢ 2682, (60)

V2 (0 K)2

There exists ¢* > 0 such that

— forall ¢ < c*, the population persists in the sense of Theorem 2 (or Corollary 1
when the growth map f is not necessarily monotonic),

— forall ¢ > c*, the population goes extinct in the sense of Theorem 2 (or Corollary
1 when the growth map f is not necessarily monotonic).
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Moreover, if E_ defined in (43), and Lq the principal eigenvalue of Kq defined in (46)
are such that R - Ly > 1, the critical shifting speed is given by

¢* =+/2(6K)2 (In(ho) + E[In(ro)]) > 0. (61)

The critical shifting speed for persistence thus increases with the expected geometric
growth rate. Heuristically one would imagine that when o X is small enough relative to
£2¢ then ¢* should increase with the variance of the dispersal kernel, as the population
becomes more mobile. On the other hand, when X becomes too large relative to £2¢
then the population would disperse outside its favourable environment and then c*
should decrease with the variance of the dispersal kernel.

Assuming that

1 ifye £,
= ]]_ =
800) %) [0 otherwise.
one can also approximate the principal eigenvalue A using the dispersal success
approximation

Ao sO(y)dy (62)

1£20] J 2,

as defined in (4) or the modified dispersal success approximation

~ 1 s9(y) 0
AO—EO/QO(A_O)s@)dy (63)

as defined in (5), with so(y) = f 2 K (x — y)dx the dispersal success function when
¢ = 0. We obtained similar conclusion than Reimer et al. (2016) when comparing
the principal eigenvalue A, its dispersal success approximation Ao and its modified
dispersal success approximation 20 (Fig. 5), observing that the modified dispersal
approximation gives a more accurate estimate of the principal eigenvalue Ao than the
regular dispersal success approximation.

In this section, we derived a analytical tool to characterise the persistence of a
population facing shifting range in a stochastic environment. We also analysed fur-
ther the dependence of the criterion with respect to the parameters of the model and
investigated the existence of a critical shifting speed c, separating persistence from
extinction, in the particular case of Gaussian dispersal kernel.

4 Numerical Calculation of Persistence Conditions, with Application to
Shifting Butterfly Populations

We now focus on applying the stochastic model and theory to butterfly populations

responding to climatic change. Our goal is twofold, first to illustrate the calculation of
A (44) and the critical shifting speed ¢* (61) in a ecologically realistic problem and
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Climate Change and Integrodifference Equations 1887

second to investigate the impact of variability in environmental shift (o) and growth
rate (r) on population persistence.

We assume that for each generation, there are only two possible environments, a
good environment when o = o, and a bad environment when « = «j, such that

P(a =ap) =0.5and P(a = ag) =0.5.
We consider o € {o,0}, and r € {r, 7} with
g<0<oand0<r <T. (64)

To define good and bad environments, we assume that the larger the r, the better the
environment and the smaller the o, the better the environment and thus consider

ag = (o,7)andap = (0, 1). (65)

Leroux et al. (2013) study the effect of climate change and range migration for twelve
species of butterflies in Canada. In their papers, the authors use a reaction—diffusion
model to study the ecological dynamics of the population and its persistence properties.
In their analyses, they estimate the shifting speed ¢ and the growth rate r for each
species to compute the critical diffusion coefficient that will determine the persistence
of the population assuming no restriction on the length of the patch. Here we use their
estimated means and standard deviation of ¢ and r to fix the values of ¢, o, &, r and
7 defined above and

¢ = 3.25 km/year, o = —1.36 km/year, 0 = 1.36 km/year, r =2.07, ¥ =4.85

unless otherwise stated. We then study the persistence of the population in our sto-
chastic framework for a fixed patch size |£29| = 10 km.

4.1 Critical Shifting Speed for Gaussian Kernel

First, we assume that the shifting speed is fixed and deterministic, i.e., 0 = 0, and we
investigate numerically the variation of the critical shifting speed ¢* as a function of
the variance of the dispersal kernel in the case of Gaussian dispersal kernel. Indeed,
using the analysis of Sect. 3.2, we know that for Gaussian kernel, when o = 0, that is,
the shifting speed is not stochastic anymore, then there exists a critical speed ¢* > 0
such that for all ¢ < ¢* the population persists in the moving frame whereas if ¢ > ¢*
the population goes extinct. Using Eq. (61), we know that ¢* = \/ 2(6%)21n(ro - R),
with Ao being the principal eigenvalue of the linear operation K¢ defined in (46) when
¢ = 0 and R being the geometric average of the geometric growth rate, defined in

(43). Notice from the derivation of ¢* in the previous section that when Ag - R <1,
(‘2 -

the critical speed is zero because for all ¢ > 0, A = e 20K)72 Ao - R defined in (56), is

always smaller than 1. As can be observed from Fig. 6, the critical shifting speed for

persistence first increases with the variance of the dispersal kernel as the population
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is more and more mobile and can track its favourable environment more easily. Then,
the critical speed decreases for large values of (o%)? and converges to 0 as the patch
size becomes too small for the population to persist even in a nonshifted environment.
When the shifting speed ¢ = 3.25 km/year, as it was suggested by Leroux et al. (2013),
there exists three different regimes for the persistence of the population depending on
the value of the variance (o %)?2 (Fig. 6b). When the variance of the dispersal kernel
is small (point A), the critical speed for persistence ¢* is smaller than the shifting
speed ¢ = 3.25 and thus population cannot keep pace with its environment. As the
variance (o %)? increases (point B), the critical speed for persistence increases above
3.25 and thus the population persists. Nevertheless, when (o%)? becomes too large
(compared to the patch size), the critical speed for persistence decreases below the
shifting speed ¢ = 3.25 to reach 0 (point C) and the population does not keep pace
with its environment anymore. One can also note that in this framework the dispersal
success approximation for the principal eigenvalue A¢, defined in (4), gives an accurate
approximation of the critical speed for persistence (Fig. 6a).

4.2 Effect of the Dispersal on Persistence of Butterfly in Canada

In this section, we approximate the persistence criteria A, defined in (18), computing
A; for large t and study the change in the persistence criterion as a function of the
variance of the dispersal kernel, when all the other parameters are fixed. We choose
parameters based on the analysis by Leroux et al. (2013):

¢ = 3.25 km/year, ¢ = —1.36 km/year, o = 1.36 km/year, r = 2.07, ¥ = 4.85.

We use two different kernels, the Laplace kernel
K(x) = S (66)

and the Gaussian kernel

2

1 Xt
K@) = ————¢ 26K? (67)

V27 (o K)2

and consider for each kernel a variance (0 X)2, (605)? = (2 / a?) for Laplace kernel)
that spans from 0.1 to 150 km?/year. We approximate A, computing

1/t
A= ( / ﬁ,(x)dx) (68)
2

for large ¢, as defined in (18) (Fig. 7). As can be expected from the computation of
the critical speed in Fig. 6, the value of A increases with the variance of the dispersal
kernel at first and then decreases when the variance becomes too large with respect to
the patch size (Fig. 7). Whereas the persistence criteria A associated with the Laplace
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Fig.7 Approximation of A as a function of the dispersal kernel variance, for Gaussian kernel (solid curve)
and Laplace kernel (dashed curve). The value of A is compared to 1 (dotted curve). Points A, B and C
highlight the existence of three different persistence regimes as the variance of the dispersal kernel increases.
The parameter values are the following: ¢ = 3.25 km/year, 0 = —1.36 km/year, o = 1.36 km/year, r =
2.07, ¥ =4.85and [§29| = 10 km

kernel stay above 1 for large value of (6%)2, the one associated with the Gaussian
kernel decreases below 1 for large variance (Point C in Fig. 7).

4.3 Stochasticity of the Parameters and Persistence of the Population

We now turn our attention to investigating the effect of the stochasticity in the para-
meters on population persistence. We analyse the effects of increasing the variance
of the yearly shift o or increasing the variance of the growth rate r separately. In
each case, we assume that the expectation of the random variable o or r is fixed and
the probability of a bad (respectively, good) environment is also fixed to 0.5. In this
section, we used the values from Leroux et al. (2013) to fix the parameters values and
assume that

¢ = 3.25 km/year, |229| = 10 km and (%)% = 25 km?/year.

We first analyse the variation of the persistence criterion A as a function of the
variance of the yearly shift o. To do so we fix r, 7 using again the values from Leroux
et al. (2013) and assume that

r =2.07 and 7 = 4.85.

We approximate A, computing A, for large 7, as a function of the variance of o, the
yearly shift, assuming that E[o] = 0 (Fig. 8a). For this analysis, we consider again
two types of dispersal kernel: a Gaussian dispersal kernel and a Laplace dispersal
kernel. As illustrated in Fig. 8a, the persistence criterion A decreases as the variance
of o increases, and thus persistence is harder to achieve in environment with high
stochasticity. Moreover, when the variance of o becomes too large, the population
cannot persist anymore (A < 1 in Fig. 8a).
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Using a similar approach, we analyse the effect of increasing the variance of the
growth rate r on the persistence criterion A. To do so we fix o and & using again the
values from Leroux et al. (2013) and assume that

o =—136and o = 1.36.

As illustrated in Fig. 8b, the persistence criterion is also decreasing as a function of
the variance of the growth rate ». We thus conclude that adding variance to a model
will impact negatively the persistence of the population.

In this section, we considered a simple example, applicable to butterfly popula-
tions, where there exists only two outcomes for the random variable: a bad or a good
environment. We investigated the dependence of the persistence of the population on
the variance of the dispersal kernel and concluded that at first the persistence criterion
(and also the critical shifting speed in the particular case of Gaussian kernels) increases
with the variance of the dispersal kernel as the population increases its mobility and
thus its ability to follow its favourable habitat. On the other hand, the persistence
criterion decreases as the variance of the dispersal kernel becomes too large, because
the population flees its favourable habitat. We also investigated the dependence of the
persistence of the population on the variability of the two stochastic variables in our
model. We numerically analysed the persistence criterion as a function of the variance
of the random variable o, the yearly shift, or as a function of the variance of the ran-
dom variable r, the growth rate. We observed that the persistence decreases with the
variability of o (Fig. 8a) and with the variability of » (Fig. 8b) and concluded that the
variability of the asymptotic shifting speed or of the growth rate has a negative effect
on population persistence.

5 Discussion

In this paper, we model and analyse persistence conditions for a population whose
range distribution is shifted towards the pole at a stochastic speed. The problem arises
from the effects of climate change on range distribution (Parmesan 2006). While
previous mathematical analyses of this problem consider deterministic environment
(Zhou and Kot 2011, 2013; Harsch et al. 2014; Phillips and Kot 2015), it has been
highlighted that the presence of climate change increases the temporal variability
of the environment, partly due to extreme climatic events (IPCC 2007). Therefore,
understanding the effect of a random geometric growth rate and a random shifting
speed of the favourable environment becomes necessary.
We first summarise the main results of our study.

— Convergence in distribution to an equilibrium (as time goes to infinity), when the
population is assumed to have compensatory competition dynamics,

— Existence of a deterministic metric, having a biological interpretation in terms
of a growth rate, which characterises persistence of the population in the case of
compensatory and overcompensatory competition dynamics,

— Derivation of the persistence metric using the principal eigenvalue of a linear
integral operator when the deviation of the shifting speed is fixed,
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— Existence of a critical shifting speed separating persistence from extinction in the
specific case of Gaussian dispersal kernel,

— Approximation of the critical shifting speed, using the dispersal success approxi-
mation (VanKirk and Lewis 1997) and the modified dispersal success approxima-
tion (Reimer et al. 2016),

— Analysis of the persistence of a population of butterfly facing climate change and
range shift as a function of its dispersal capacity, through numerical simulation,

— Analysis of the qualitative effect of the variability in the yearly shift or in the
growth rate on the persistence of a population in the particular case of butterfly.

More precisely, our model assumes that the geometric growth rate for low density
in the favourable environment is random from one generation to the next and that
the bounded favourable environment is shifted at some asymptotic speed ¢, with an
additional random yearly shift o;. The centre of the favourable environment, s;, is
thus given by s; = ct + o,. We use the theory of integrodifference equations to
analyse the persistence of the population in this framework and employ a change
of variables to study the problem in the shifted framework to track the favourable
environment.

The theory of Hardin et al. (1988) and Jacobsen et al. (2015) applies to our
shifted problem and provides a general measure for persistence in term of the lin-
earised problem at zero. Indeed in these two papers, the authors prove that the
persistence of the population depends on the magnitude of the metric A (Jacob-
sen et al. 2015) defined as the asymptotic growth rate of the linearised operator,
or equivalently on the magnitude of the metric R (Hardin et al. 1988) defined as
the asymptotic L* norm of the linearised operator. The former metric defined by
Jacobsen et al. (2015) has more biological meaning and is easier to compute numer-
ically, which is why we chose to use it in this paper. Our paper thus provides a
mathematical metric to measure persistence of the population facing climate change
and shifted range distribution in a temporally variable environment. Note that we
chose to study the problem in one dimension (i.e., 2 C R) but the theory can
be extended to £2 C R", n > 1, and the results in Sect. 3 are straightforward to
extend.

We use the analytical results of Sect. 3 to study the persistence of a butterfly popu-
lation facing range shifts. We computed, for two different dispersal kernels (Laplace
and Gaussian), the persistence metric as a function of the dispersal capacity (vari-
ance of the dispersal kernel). We find that for a fixed shifting speed (estimated from
a paper by Leroux et al. (2013)), there exists three different regimes (Fig. 7). When
the dispersal capacity of the population is small, the butterflies cannot keep track with
their favourable environment and go extinct, when the dispersal capacity increases
the persistence metric increases above one and the population persists. On the other
hand, as the dispersal variance becomes too high, the population disperses outside its
favourable habitat and goes extinct.

In the special case, where the shift is deterministic, that is the yearly variation
is oy = 0 for all ¥ € N, then the problem describes the dynamics of a popula-
tion with variable growth, facing shifting ranges. In this case, we characterise the
persistence of the population through the magnitude of the asymptotic growth rate
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of a linear operator, similarly to the results by Zhou and Kot (2011) in the case of
deterministic scalar integrodifference equations with shifting boundaries. We also
show that in the case of Gaussian dispersal kernel, this asymptotic growth rate is
decreasing with respect to c. This proves the existence of a critical speed ¢* such
that for all shifting speed ¢ less than ¢*, the asymptotic growth rate will be above
one and the population will persist, whereas when the shifting speed is above c*,
the asymptotic growth rate is below one and the population converges to zero in its
favourable environment. These results are also independent of the initial condition,
as soon as it is nonnegative and nontrivial and in this sense is similar to the one
proved by Berestycki et al. (2009) for deterministic scalar reaction—diffusion equa-
tions.

To analytically determine the critical speed for persistence, ¢*, we need to compute
the principal eigenvalue of the linearised operator around the trivial steady state. As
the dispersal kernel is positive everywhere, this principal eigenvalue can be computed
using the power method. Nevertheless in a biological framework, this principal eigen-
value can be approximated using the dispersal success function (VanKirk and Lewis
1997) or a modified dispersal success function (Reimer et al. 2016) (Fig. 5). In this
case, the principal eigenfunction is either approximated by the probability to stay in the
suitable habitat, after the dispersal stage, normalised by the size of the habitat (disper-
sal success approximation), or by the probability to stay within the favourable habitat,
weighted by the proportion of individual at each point of the favourable domain, nor-
malised again by the size of the habitat (Reimer et al. 2016). As illustrated in Fig. 6a,
the dispersal success approximation gives accurate results for the computation of the
critical speed for persistence. On the other hand, these approximations do not give
accurate estimates of the principal eigenfunction when the dispersal kernel is shifted
by ¢ (if one wanted to estimate A. directly instead indirectly through Xp). In these
cases, one could use the methods described by Phillips and Kot (2015) to compute
efficiently the principal eigenvalue of a given linear operator.

We also highlighted, using numerical simulation, the negative effect of the variabil-
ity of the parameter on the persistence of the population. Indeed, as illustrated in Fig.
8, the persistence metric decreases with the variance of both parameters: o the yearly
shift and r the growth rate.

Finally, note that the asymptotic shifting speed c is actually uncertain in the sense
that it depends on the severity of the climate change (IPCC 2014). In this paper, we
assumed that ¢ was known but if one would only know the distribution of the different
outcomes for ¢, the asymptotic shifting speed, one can then compute the probability
of persistence using our analysis. Indeed, in the specific case of Gaussian kernel and
assuming that the yearly shift o; is zero for all #, then the probability of persistence
would be given by the probability that ¢ is less than ¢*.
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Appendix 1: Proof of Theorem 1 and 2

The proof of Theorems 1 and 2 mostly follows from Hardin et al. (1988)[Theorem 4.2
and Theorem 5.3]. Indeed Hardin et al. (1988) study the general stochastic model

Xip1 = Fo, (X0), (69)

with (X;); a random process that takes values in the set on nonnegative continuous
function in £2, (o), independent identically distributed random variable taking values
in the set S. And they have the following assumption for F,

(H1) Foreacha € S, Fy is a continuous map of C 4 (§2), into itself such that F, (1) =
0e Ci(82)ifand only if u =0 € C1(£2).

(H2) Ifu, ve C4(£2) and u > v then Fy (1) > Fy(v).

(H3) There exists some b > 0 such that for u € C,(£2)
(@) |[Fo@)|loc <bforalla € S and ||ulle < b,
(b) there exists some time ¢ (depending on u¢) such that

||Fa,°"'°Faou0||oo<b’ (70)

forall ag, ..., € S,
(c) there exists some d > 0 such that

Fo(b) = d (71)

foralla € S.
(H4) Let By := {u € C1(£2) : ||u|lco < b}, then there is some compact set D C

C+(82) such that Fy(Bp) C D foralla € S.
(H5) There exists some 2 > 0 such that

1 Folloo < lfullco, (72)

foralle € Sand u € C(£2).
(H6) There exists some & > 0 such that

Fo(Bp) C Kg, (73)
where Kg :={u € C1(£2) : u > &|lullsc}.
(H7) For each a > 0, there exists a continuous function t : (0, 1] — (0, 1] such that
t(s) > s forall s € (0, 1) and such that
T(s)Fy(u) < Fo(su) (74)
foralloe € Sand u € C(£2) suchthata < u < b.

(H8) F, is Fréchet differentiable (with respect to C1(£2)) at 0 € C(£2). We denote
by L the operator F,(0)
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(H9) There exists a function N : Ry — [0, 1] such that

lim 0./\/(14) =land N(||u]|oo) Lot < Fy(u) < Lou, (75)

u—0, u>

forall u € C1(£2).

We want to prove that the previous hypotheses are satisfied in our framework and then
apply Theorem 4.2, Theorem 5.3 by Hardin et al. (1988) and Theorem 2 by Jacobsen
et al. (2015). One can check, as it is done by Jacobsen et al.(2015, Section 5.3), that
under Hypotheses 1-5, the previous hypotheses (H1)—(H9) are satisfied and one can
then apply Theorem 4.2, Theorem 5.3 from Hardin et al. (1988) and Theorem 2 from
Jacobsen et al. (2015). For completeness, we will write the main steps referring most
of the time to Jacobsen et al.(2015, Section 5.3). First, we denote by,

K :=sup{K(x), x € R} < 400, (76)
and
K :=inf {K(x), x € (inf 2 —sup 2 + c,sup 2 —inf 2 + ¢)} > 0. 77

These two constants will be used several times in the proof of (H1)—(H9) below.

(H1) The continuity of F, follows from the continuity of f,, and the boundedness
of K and |, o go(y)dy. K positive in R, f; and go nonnegative yield the second
statement.

(H2) This follows from the monotonicity of f, forall« € S.

(H3) The constant b > 0 will be defined later in the proof,

(a) foralla € S,u € C1(£2),

[1Fo () lloo = max/ K —y+o)go(y —o) fru(y))dy (78)
xeR Jo

<m-K / go(y)dy = b. (79)
20

This proves the statement.
(b) Using the same argument as before, for all ug € Cy(£2), t+ € N*
o, ...,ap €S,
[|Foy 0 -+ 0 Foy(uo)lloo = || Fo, (W)lloo < b, (80)

where u € C(£2).
(c) Forall x € £2,

Fa(b)(x) 2 inf. f, () / K(x =y +0)go(y —o)dy = inf f(b) -d
ae Q ae
@81
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with
di :=£‘/ go(y)dy >0 (82)
20

One concludes using the positivity of K and Hypothesis 4(iii)b that there
exists d > 0 such that for all x € £2,

Fo(D)(x) = d. (83)

(H4) This statement follows from the continuity of K, uniform boundedness of F,
and f; and Hypothesis 5, details can be found in Jacobsen et al. (2015)[Section
5.3].

(H5) From assumption 4(ii)c, we have that for all u > 0, f/(0)u > f,(u). Thus,
using this inequality , with assumptions 1(ii), 2(ii) and 4 (iii)a, we get for all
ueCy(82),foralla €S,

1 Folloo < Rllulloo, (84)

withh :=7- K - [, go(y)dy.
(H6) First, notice that forall« € S, u € B,

IIFa(u)Iloo§7~f~/ggo(y—o)u(y)dy = /ng(y—o)u(y)
. ||Fa(@|oo’

85
r-K (85)
and using Hypothesis 4(ii)c,
fo(u) > J “lfb)u. (86)
Then for all x € 2
(b
Fy(u)(x) > K - flf ) /Q go(y — o)u(y)dy (87)
. é S (D) ||Foc(i4)||oo (88)
K b r

and the statement is proved.
(H7) This proof is also derived from Jacobsen et al. (2015). We want to find a con-
tinuous function t : (0, 1] — (0, 1] such that for all s € (0, 1),

T (5) Fu () < Fo(s10)
@/Q K=y +0)goly — a)e(s) fyu()dy < /Q KGx—y+o)

go(y — o) fr(su(y))dy
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Thus, it is sufficient to have 7(s) f (u(y)) < fr(su(y)) for all y € £2. From
Hypothesis 4(ii)c, as s € (0, 1), we have that foralla € S

Jr(su)

) 89

s <

and letting 7 (s) = min {%, eSS, a<u< b} we have, forall s € (0, 1),
a€Sandu € [a, b],

Sr(su)
700 > 1(s) (90)

7(s) > s and

and the statement is proved.
(H8) We want to prove that

i [Fe© + 1) = Fo(0) — Lahllo
1m
h—0 1700

=0, 1)

where £, := F,(0) is a linear operator. Using the differentiability of f, at 0,
one proves that the limit exists and Loh = r f_Q K(x—y+c)go(y —o)h(y)dy.

(H9) The second part of the inequality follows from assumption 4(ii)c. Foreacha € S
let Ny : [0, +00) — [0, 1] be such that

fd®@p < 0
Nw) =] ru ’ 92
(@) [1 ifu = 0. ©2)

The function A, is continuous and defining N (1) = min {N, (1), a € S}, it
gives the wanted statement (using the fact that NV (u(x)) > Ny (||ul|oo))-

We can thus apply Theorem 4.2 from Hardin et al. (1988) to prove Theorem 1 and use
Theorem 5.3 by Hardin et al. (1988) and Theorem 2 by Jacobsen et al. (2015) to prove
Theorem 2. For sake of completeness, we include the three Theorems from Hardin
et al. (1988) and Jacobsen et al. (2015) below.

Theorem 3 [Hardin et al. (1988, Theorem 4.2)] Suppose that Hypotheses (HI)—(H7)
above and Hypothesis 3(i) in Sect. 2 are satisfied and that uy # 0 € C4(82) with
probability one. Then u; solution of (14) converges in distribution to a stationary
distribution p*, independent of u, such that either £*({0}) = 0 or n*({0}) = 1.

The above Theorem from Hardin et al. (1988) states that the distribution p* is stationary
in the sense that it satisfies

Pu* =p* (93)

where P is the Markov process given by
Pu(B) = / w(Fy ' (B))dPa. (94)
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with B € B(C1(£2) the family of borel sets in C4(£§2). This is equivalent to writing
that the random variable u* with distribution p* satisfies

u* = FJ[u*] (95)

for some o* taking its values in S with distribution P,.

Theorem 4 [Hardin et al. (1988, Theorem 5.3)] Suppose that Hypotheses (H1)—(H9)
above and Hypothesis 3(i) in Sect. 2 are satisfied and that uy # 0 € CL(82) with
probability one. Let u* be as in Theorem 4.2 and define R = lim;_, o || Lo, 0 -+ -0
Loy |1, with L the linearised operator around zero ((19))

(a) If R < 1 then u*({0}) = 1 and u; — 0 with probability one.
(b) If R > 1 then u*({0}) = 0.

Theorem 5 [Jacobsen et al. (2015, Theorem 2)] Let R be defined as in the previous
theorem by R = 1im;—, ;o ||Lq, © - -+ 0 Lgy ||, then A = R (A defined in (18)).

Appendix 2: Persistence Condition and Invasion Speed

In this section, we derive an heuristic criteria for persistence inspired from Neubert
et al. (2000) linking the critical patch size and the asymptotic invasion speed to get
necessary conditions for persistence. We consider problem (9), where the suitability
functions gg are indicator functions, that is

1 ify e 2,
0 otherwise.

go(y) =1g, = [

In addition to the assumptions made in Sect. 2, we will also assume that K is a
thin tail dispersal kernel in the sense that it has exponentially bounded tails, i.e., there
exists s > 0,

/ SHK (x)dx < +oo. (96)
R

This last assumption guarantees that the moment generating function (29) exists on
some open interval of the form (0, s ™). This assumption was not necessary to derive the
persistence condition in Sect. 3 but it will be used to study the speed of the stochastic
wave.

Appendix 2.1: Critical Domain Size in the Constant Environment

Let us first consider the problem in the nonshifted frame and thus assume that s, = 0,
where (s;);, defined in Sect. 2, is the centre of the suitable habitat at generation ¢.
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Thus, we consider the following integrodifference equation
ﬁﬁu)z/‘K@—nﬁmﬁw»m, 97)
£20

denoting by u° the solution in this nonshifted framework. Using the theorems in Sect.
3, we get that as time goes to infinity, u” persists if

E[ln(rg)] > —In(Ap), (98)

where E[-] is the expectation of a random variable and A¢ is the principal eigenvalue
of the linear operator Cp:

mem=/1Ku—wmw®. (99)

20

Now assume that K, £2g and (r;); are such that (98) is satisfied and study the problem
in the nonmoving, homogeneous framework.

Appendix 2.2: Invasion Speed in a Stochastic Homogeneous Environment

Now we are interested in deriving the asymptotic invasion speed of the population in
an homogeneous environment to compare it with the forced shifting speed c¢. We thus
consider the homogeneous problem on R in the nonmoving frame, i.e., let (n;); be the
solution of the equation

wma=AK@—mnWWMn (100)

As we are considering the initial problem in the nonmoving frame, K does not depend
on ¢ and gg = 1 in R and thus the stochasticity comes only from the growth term.
From the analysis of Neubert et al. (2000), there are two different approaches to
estimate the invasion speed of the stochastic process (n;);. One can either consider the
invasion speed of the expected wave or the asymptotic speed of the stochastic wave.
We will only consider the latter approach and assume that the speed is governed by
the linearisation at 0. Denote by (71;);, the solution of the linearised operator at 0, i.e.,
forallt € N,

ni+1(§) = /R K (& — mring (ndn. (101)

We define the random variable &, as the most rightward position such that 7, is greater
that some threshold, i.e.,

gy =sup{¢ € R, ny > n}, (102)
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where 77 € (0, 1) is a fixed critical threshold. Assume that V&€ € R, ng(§) = ae 58,
for some s > 0, i.e., the initial condition has a wave shape, then forall € N, § € R,

t
A1 (&) = [ JoiM(s)e™, (103)

i=0

where M is the moment generating function of K ((29)). This function exists in some
interval (0, sT) because of assumption (96). Moreover, 7 = no(&80) = i1;11(Er41),
thus denoting by ¢, (s) the invasion speed of (&), starting with ng(§) = ae ¢ for all
& e RT, we have

Hry1 — &o

t+1

Ly 11( M(s))
t—l—li_os s

Unoon + 3 Ly
s g t+1 s A

Thus, (c;(s)) is the sum of independent identically distributed variables and thus
converges in distribution to a random variable that is normally distributed with mean
1 (s) and variance o2 (s) such that

Cr+1(s) =

1
u(s) = E[; In(roM(s))] (104)
and
) o1 1
c“(s) = lim -V |[—-In(roM(s))| =0. (105)
t—+oot S
As o2(s) = 0, this implies that ¢,(s) converges in probability to the constant

%E [In(roM (s))]. This is true for all s such that M (s) exists. Now if we want to

consider the more general cases when 7 is a compactly supported function, the mini-

mal speed over all the s will be the relevant one and we have that the invasion speed of

the stochastic wave at time 7, ¢;, has mean yu = ing 1 (s) and variance (o,*)2 = 0,2 (s™),
§>

where s* is such that p(s*) = w, and thus converges in probability to
|
¢’ = inf —E[In(roM(s))]. (106)
s>08
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